Search results for " Supervised machine learning"
showing 2 items of 2 documents
Problem Transformation Methods with Distance-Based Learning for Multi-Target Regression
2020
Multi-target regression is a special subset of supervised machine learning problems. Problem transformation methods are used in the field to improve the performance of basic methods. The purpose of this article is to test the use of recently popularized distance-based methods, the minimal learning machine (MLM) and the extreme minimal learning machine (EMLM), in problem transformation. The main advantage of the full data variants of these methods is the lack of any meta-parameter. The experimental results for the MLM and EMLM show promising potential, emphasizing the utility of the problem transformation especially with the EMLM. peerReviewed
Machine Learning: An Overview and Applications in Pharmacogenetics.
2021
This narrative review aims to provide an overview of the main Machine Learning (ML) techniques and their applications in pharmacogenetics (such as antidepressant, anti-cancer and warfarin drugs) over the past 10 years. ML deals with the study, the design and the development of algorithms that give computers capability to learn without being explicitly programmed. ML is a sub-field of artificial intelligence, and to date, it has demonstrated satisfactory performance on a wide range of tasks in biomedicine. According to the final goal, ML can be defined as Supervised (SML) or as Unsupervised (UML). SML techniques are applied when prediction is the focus of the research. On the other hand, UML…